G = (C22×D5)⋊A4 order 480 = 25·3·5
metabelian, soluble, monomial
Aliases:
(C22×D5)⋊A4,
C24⋊2D5⋊C3,
C5⋊(C24⋊C6),
C22⋊A4⋊2D5,
C24⋊3(C3×D5),
(C23×C10)⋊3C6,
C22.4(D5×A4),
(C5×C22⋊A4)⋊3C2,
(C2×C10).4(C2×A4),
SmallGroup(480,268)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C22×D5)⋊A4
G = < a,b,c,d,e,f,g | a2=b2=c5=d2=e2=f2=g3=1, gbg-1=ab=ba, ac=ca, fdf=gdg-1=ad=da, ae=ea, af=fa, gag-1=b, bc=cb, ede=bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, cg=gc, geg-1=ef=fe, gfg-1=e >
Subgroups: 568 in 70 conjugacy classes, 11 normal (all characteristic)
C1, C2, C3, C4, C22, C22, C5, C6, C2×C4, D4, C23, D5, C10, A4, C15, C22⋊C4, C2×D4, C24, Dic5, D10, C2×C10, C2×C10, C2×A4, C3×D5, C22≀C2, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C22⋊A4, C5×A4, C23.D5, C2×C5⋊D4, C23×C10, C24⋊C6, D5×A4, C24⋊2D5, C5×C22⋊A4, (C22×D5)⋊A4
Quotients: C1, C2, C3, C6, D5, A4, C2×A4, C3×D5, C24⋊C6, D5×A4, (C22×D5)⋊A4
Character table of (C22×D5)⋊A4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4 | 5A | 5B | 6A | 6B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 15A | 15B | 15C | 15D | |
size | 1 | 3 | 6 | 6 | 20 | 16 | 16 | 60 | 2 | 2 | 80 | 80 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | complex lifted from C3×D5 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | complex lifted from C3×D5 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | complex lifted from C3×D5 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | complex lifted from C3×D5 |
ρ13 | 3 | 3 | -1 | -1 | -3 | 0 | 0 | 1 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | -1 | -1 | 3 | 0 | 0 | -1 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 6 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ16 | 6 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ17 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -3-3√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -3+3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5×A4 |
ρ18 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -3+3√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -3-3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from D5×A4 |
ρ19 | 6 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ53+3ζ52 | 3ζ54-ζ5 | -ζ54+3ζ5 | 3ζ53-ζ52 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 6 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -ζ53+3ζ52 | 3ζ54-ζ5 | -ζ54+3ζ5 | 3ζ53-ζ52 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 6 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ54+3ζ5 | -ζ53+3ζ52 | 3ζ53-ζ52 | 3ζ54-ζ5 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 6 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -ζ54+3ζ5 | -ζ53+3ζ52 | 3ζ53-ζ52 | 3ζ54-ζ5 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 6 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 3ζ54-ζ5 | 3ζ53-ζ52 | -ζ53+3ζ52 | -ζ54+3ζ5 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 3ζ54-ζ5 | 3ζ53-ζ52 | -ζ53+3ζ52 | -ζ54+3ζ5 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 3ζ53-ζ52 | -ζ54+3ζ5 | 3ζ54-ζ5 | -ζ53+3ζ52 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 6 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 3ζ53-ζ52 | -ζ54+3ζ5 | 3ζ54-ζ5 | -ζ53+3ζ52 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
Smallest permutation representation of (C22×D5)⋊A4
►On 40 pointsGenerators in S
40
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 28)(2 27)(3 26)(4 30)(5 29)(6 23)(7 22)(8 21)(9 25)(10 24)(11 38)(12 37)(13 36)(14 40)(15 39)(16 33)(17 32)(18 31)(19 35)(20 34)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(6 16 11)(7 17 12)(8 18 13)(9 19 14)(10 20 15)(26 36 31)(27 37 32)(28 38 33)(29 39 34)(30 40 35)
G:=sub<Sym(40)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,28)(2,27)(3,26)(4,30)(5,29)(6,23)(7,22)(8,21)(9,25)(10,24)(11,38)(12,37)(13,36)(14,40)(15,39)(16,33)(17,32)(18,31)(19,35)(20,34), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (6,16,11)(7,17,12)(8,18,13)(9,19,14)(10,20,15)(26,36,31)(27,37,32)(28,38,33)(29,39,34)(30,40,35)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,28)(2,27)(3,26)(4,30)(5,29)(6,23)(7,22)(8,21)(9,25)(10,24)(11,38)(12,37)(13,36)(14,40)(15,39)(16,33)(17,32)(18,31)(19,35)(20,34), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (6,16,11)(7,17,12)(8,18,13)(9,19,14)(10,20,15)(26,36,31)(27,37,32)(28,38,33)(29,39,34)(30,40,35) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,28),(2,27),(3,26),(4,30),(5,29),(6,23),(7,22),(8,21),(9,25),(10,24),(11,38),(12,37),(13,36),(14,40),(15,39),(16,33),(17,32),(18,31),(19,35),(20,34)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(6,16,11),(7,17,12),(8,18,13),(9,19,14),(10,20,15),(26,36,31),(27,37,32),(28,38,33),(29,39,34),(30,40,35)]])
Matrix representation of (C22×D5)⋊A4 ►in GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
,
40 | 58 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
,
7 | 41 | 0 | 0 | 0 | 0 | 0 | 0 |
39 | 54 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
,
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 60 | 60 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,60,1,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,60,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60],[40,1,0,0,0,0,0,0,58,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[7,39,0,0,0,0,0,0,41,54,0,0,0,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60,0,0,0,1,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,60,1,0,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60],[13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60] >;
(C22×D5)⋊A4 in GAP, Magma, Sage, TeX
(C_2^2\times D_5)\rtimes A_4
% in TeX
G:=Group("(C2^2xD5):A4");
// GroupNames label
G:=SmallGroup(480,268);
// by ID
G=gap.SmallGroup(480,268);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-5,1640,198,1683,94,851,1524,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^5=d^2=e^2=f^2=g^3=1,g*b*g^-1=a*b=b*a,a*c=c*a,f*d*f=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,g*a*g^-1=b,b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,c*g=g*c,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations
Export
Character table of (C22×D5)⋊A4 in TeX